Overproduction and increased molecular weight account for the symbiotic activity of the rkpZ-modified K polysaccharide from Sinorhizobium meliloti Rm1021.

نویسندگان

  • L A Sharypova
  • G Chataigné
  • N Fraysse
  • A Becker
  • V Poinsot
چکیده

K polysaccharides (KPSs) of Sinorhizobium meliloti strains are strain-specific surface polysaccharides analogous to the group II K antigens of Escherichia coli. The K(R)5 antigen of strain AK631 is a highly polymerized disaccharide of pseudaminic and glucuronic acids. During invasion of host plants, this K antigen is able to replace the structurally different exopolysaccharide succinoglycan (EPS I) and promotes the formation of a nitrogen-fixing (Fix(+)) symbiosis. The KPS of strain Rm1021 is a homopolymer of 3-deoxy-D-manno-2 octulosonic acid (Kdo). The Kdo polysaccharide is covalently linked to the lipid anchor, has a low molecular weight (LMW), and is symbiotically inactive. On introduction of the Rm41-specific rkpZ gene into strain Rm1021, a modified KPS is expressed that is able to substitute EPS I during symbiosis with the host plant. To better understand the nature of modification conferred by rkpZ, we performed a structural analysis of the KPS using nuclear magnetic resonance (NMR), electrospray ionization-mass spectrometry (ESI-MS), and gas chromatography (GC-MS). The modified KPS retained primary polyKdo structure, but its degree of polymerization (DP) and level of production were increased significantly. In contrast to the wild-type polyKdo, only a part of polyKdo was lipidated. Shorter polysaccharide chains were lipid-free, whereas longer polysaccharide chains were lipidated. Sinorhizobium meliloti Rm1021 was found to carry two paralogs of rkpZ. Both genes are involved in polyKdo production, but they only show partial functional activity as compared with the rkpZ of Rm41.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rkp-1 cluster is required for secretion of Kdo homopolymeric capsular polysaccharide in Sinorhizobium meliloti strain Rm1021.

Under conditions of nitrogen stress, leguminous plants form symbioses with soil bacteria called rhizobia. This partnership results in the development of structures called root nodules, in which differentiated endosymbiotic bacteria reduce molecular dinitrogen for the host. The establishment of rhizobium-legume symbioses requires the bacterial synthesis of oligosaccharides, exopolysaccharides, a...

متن کامل

Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.

Effective invasion of alfalfa by Rhizobium meliloti Rm1021 normally requires the presence of succinoglycan, an exopolysaccharide (EPS) produced by the bacterium. However, Rm1021 has the ability to produce a second EPS (EPS II) that can suppress the symbiotic defects of succinoglycan-deficient strains. EPS II is a polymer of modified glucose-(beta-1,3)-galactose subunits and is produced by Rm102...

متن کامل

Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti.

The production of succinoglycan by Sinorhizobium meliloti Rm1021 is required for successful nodule invasion by the bacterium of its host plant, alfalfa. Rm1021 produces succinoglycan, an acidic exopolysaccharide composed of an octasaccharide repeating unit modified with acetyl, succinyl, and pyruvyl moieties, in both low- and high-molecular-weight forms. Low-molecular-weight (LMW) succinoglycan...

متن کامل

Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.

Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiratio...

متن کامل

GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function.

The Sinorhizobium meliloti Rm1021 Delta glnD-sm2 mutant, which is predicted to make a GlnD nitrogen sensor protein truncated at its amino terminus, fixes nitrogen in symbiosis with alfalfa, but the plants cannot use this nitrogen for growth (S. N. Yurgel and M. L. Kahn, Proc. Natl. Acad. Sci. U. S. A. 105:18958-18963, 2008). The mutant also has a generalized nitrogen stress response (NSR) defec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glycobiology

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2006